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The exchange energy density has been studied by Hartree–Fock (HF) theory in the 10-electron
molecules H2O, NH3 and CH4. The local density approximation (LDA) then provides a natural
starting point for interpreting the HF data. Though LDA leads to ‘shape similarity’ for the
exchange density of these three molecules, there is, (a) no universality and (b) multivalued
character at low densities. The low-density regime can, however, be interpreted in terms of
a functional jr�j=ln �, with � the ground-state electron density. This functional is here provided
with a firm theoretical foundation. Thus, there is a ‘cross-over’ from LDA at high densities to
a low-density functional in HF theory.
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1. Background and outline

In a recent study, Wanko et al. [1] have criticised existing exchange-correlation
functionals [2] used in practical applications of density functional theory (DFT).

Especially, they have stressed the importance of accounting for non-locality.
This has motivated the present study, which focuses on the non-locality of the exchange
(x) energy density, denoted below by �xð~rÞ. A precise definition is given in

equation (4) below. Following Löwdin [3], we take Hartree–Fock (HF) theory to
afford the correct treatment of exchange, without correlation. To be definite, we
have chosen for the quantitative study of �xð~rÞ reported below the three 10-electron

molecules H2O, NH3 and CH4 at their equilibrium geometries.
Let us then give some theoretical background to the present study. It has been

known since the pioneering work of Dirac [4] that in spin-compensated molecules
and clusters whose ground-state wave function is built from a single Slater determinant
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via orbitals  ið~rÞ, the total exchange energy Ex is given compactly in terms of the
Dirac density matrix �ð~r, ~r0Þ defined by

�ð~r, ~r0Þ ¼ 2
X
i

 ið~rÞ ið~r0Þ ð1Þ

where i runs over all occupied orbitals. Then Ex has the explicit form [4,5]

Ex ¼ �
e2

4

Z
�2ð~r, ~r0Þ

j~r� ~r0j
d~r d ~r0 ð2Þ

where � satisfies the idempotency condition, which for spin-compensated systems reads

�ð~r, ~r0 Þ

2
¼

Z
�ð~r, ~r00 Þ

2

�ð ~r00 , ~r0Þ

2
d ~r00 : ð3Þ

What we focus on in the present article is the exchange energy density �xð~rÞ.
Though there is no unique definition of this quantity, we adopt throughout this
study the form

�xð~rÞ ¼ �
e2

4

Z
�2ð~r, ~r0Þ

j~r� ~r0j
d ~r0 ð4Þ

which follows naturally from the result equation (2) which immediately gives back the
desired result:

Ex ¼

Z
�xð~rÞd~r: ð5Þ

One of us, in early work [5], argued that at sufficiently large ~r (taken here to mean that
we are far from all nuclei in the molecule or cluster under consideration) equation (4)
simplifies to

�xð~rÞ ! �
e2

4r

Z
�2ð~r, ~r0Þd ~r0 : j~rj ! infinity: ð6Þ

Using the idempotency condition equation (3) in the diagonal limit ~r0 ! ~r, when it
follows from the definition (1) that

�ð~r, ~r0Þj ~r0¼~r ¼ �ð~rÞ, ð7Þ

the ground-state electron density, one finds the large ~r behaviour of �xð~rÞ from
equation (6) to be [5]

�xð~rÞ ! �
e2

2r
�ð~rÞ : j~rj ! infinity: ð8Þ
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The outline of the present article is then as follows. In section 2, this result equation (8)
is compared and contrasted with the local density approximation (LDA) for the
exchange energy, which is still widely used in practical applications on especially
large molecules. Section 3 then presents calculations using HF theory on the exchange
energy density �xð~rÞ for the three 10-electron molecules H2O, NH3 and CH4. Section 4
emphasises departures of these results for �xð~rÞ from the LDA result given in
equation (9) below. The article concludes with section 5 that constitutes a summary
plus some proposals for further work that should prove fruitful.

2. Relation of asymptotic form (8) of the exchange energy density to the LDA result

The LDA result for �xð~rÞ (equation (9)) is very simply explained using the exact result
(4). One builds �ð~r, ~r0Þ in equation (1) from plane waves for the one-electron wave func-
tions  ð~rÞ. One then finds, as discussed, for example, in the book by one of us [6], that

�LDA
x ð~rÞ ¼ �

3

4

� �
3

�

� �1=3

e2�ð~rÞ4=3 ð9Þ

this result is only exact in the homogeneous electron gas limit, because of the use of
free-particle eigenfunctions.

From dimensional analysis, �LDA
x ð~rÞ being an exchange, energy per unit volume has

dimensions e2/L4, where L denotes a length. In equation (9), the characteristic
‘length’ is ��1=3, since � is an electron density and has dimensions L�3. But the exact
asymptotic result equation (8) for �LDA

x ð~rÞ contains two distinct ‘lengths’, j~rj
itself as well as ��1=3. Thus equation (9) must fail in the low-density region far from
nuclei.

2.1. Limiting form for �xð~rÞ far from all nuclei

The aim of this sub-section, therefore, is to rewrite the exact limiting form of �xð~rÞ
in equation (8) solely in terms of the basic variable of DFT [2], namely the electron
density �ð~rÞ. Far from all nuclei, �ð~rÞ takes the form

�ð~rÞ ¼ A exp �2

ffiffiffiffiffiffiffiffiffi
2Ia0
e2

r
r

a0

 !
ð10Þ

where a0 is the Bohr radius �h2=me2. In equation (10) we have focussed only on the
exponential fall-off of the density, following the work of M. Hoffmann-Ostenhof and
T. Hoffmann-Ostenhof [7], I being the ionisation potential as measured in a ‘fast’
experiment without nuclear relaxation on removing the outermost electron. From
equation (10) valid far from all nuclei we readily find two further asymptotic results:

jr�ð~rÞj ! � 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ia0=e2

a0

s2
4

3
5�ð~rÞ : j~rj ! infinity ð11Þ
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and also

ln �ð~rÞ ¼ lnA� 2

ffiffiffiffiffiffiffiffiffi
2Ia0
e2

r
r

a0

� �
: ð12Þ

At r sufficiently large to neglect the lnA term, we can rewrite equation (12) in the
unorthodox form

2

ffiffiffiffiffiffiffiffiffi
2Ia0
e2

r
r

a0
¼ �ln �ð~rÞ : j~rj ! infinity ð13Þ

Returning now to equation (8) we have at sufficiently large r the form

�xð~rÞ ! �
e2

2

�ð~rÞ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ia0=e2

p
a0ln �ð~rÞ

: ð14Þ

But we want a ‘universal’ form of �xð~rÞ at large r, and so we next remove the ionisation
potential term in equation (14) by appealing to equation (11). This yields the desired
result that

�xð~rÞ !
e2

2

jr�ð~rÞj

ln �ð~rÞ
: j~rj ! infinity ð15Þ

which must only be used at sufficiently large ~r such that ln �ð~rÞ is negative. This formally
exact ‘universal’ limit in equation (15) shows, of course, why the LDA form (9) must fail
in the low-density regime far from all nuclei. It is therefore, as a further step in
‘refining’ the LDA result in equation (9), suggestive to propose a new ansatz, albeit
approximate, that

�xð~rÞ ¼ �
e2

a40
� a40�

4=3;
ja40r�j

lnða30�Þ

� �
ð16Þ

where � is now dimensionless and is a function (not functional!) of two variables as
shown, both of these also written here in dimensionless form.
We must expect in high-density regions that generally the dominant variable is the LDA
form a40�

4=3. But in the low-density regime far from the nuclei, the ‘gradient’ variable
jr�j=lnð�Þ must become the dominant one. Perhaps also, to at least reflect Kato’s
cusp condition [8] approximately, near nuclei this gradient variable will again play a
significant role.

3. Hartree–Fock results for exchange energy density �xð~rÞ related to

qð~rÞ in H2O, NH3 and CH4

Turning next to specific HF results, the relationship between the exchange density �xð~rÞ
and �ð~rÞ has been examined for the three 10-electron systems H2O, NH3 and CH4.
Using a aug-cc-pVTZ basis set as implemented in the Gaussian03 program [9] the
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geometry of these molecules was optimised at the Hartree–Fock level and the resulting
orbitals used to evaluate the electron density �ð~rÞ as well as the exchange density �xð~rÞ as
defined in equation (17) below:

�xð~rÞ ¼ �
e2

4

X
i<j

Z
’ið ~r0Þ’jð ~r0Þ

j~r� ~r0j
d~r0 ’ið~rÞ’jð~rÞ ð17Þ

which is a realisation of the Dirac density matrix in terms of HF-orbitals.
In order to limit required computation time, plots were generated for points

in a planar rectangular grid ((x, y)-plane for the molecules oriented in their
centre of mass system), with a spacing of 0.05 au. For a given grid point ~r
the integrals

Z
��ð ~r0Þ��ð ~r0Þ

j~r� ~r0j
d~r0 ð18Þ

were calculated over the atomic orbitals �� and �� then transformed to the molecular
orbital basis, and multiplied with the values of the MO’s ’ið~rÞ and ’jð~rÞ in position ~r.
The resulting plots are depicted in figures 1–3, respectively, for H2O, NH3 and CH4.
From these figures the ‘non-universality’ as well as the multivalued character

‘H2O’
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Figure 1. Plot of ln j�xð~rÞj vs. ln �ð~rÞ for H2O, where �xð~rÞ and �ð~rÞ are from HF calculations.
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Figure 2. Plot of lnj�xð~rÞj vs. ln �ð~rÞ for NH3, where �xð~rÞ and �ð~rÞ are from HF calculations.
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Figure 3. Plot of ln j�xð~rÞj vs. ln �ð~rÞ for CH4, where �xð~rÞ and �ð~rÞ are from HF calculations.

20 C. Van Alsenoy and N. H. March

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
7
:
3
8
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



aforementioned are easily recognised. Nevertheless, there is a remarkable
‘shape similarity’ between the figures for the HF exchange energy density.

4. Summary and proposals for further work

The main achievements of the present study are as follows:

(i) The demonstration of non-locality in the HF exchange energy density �xð~rÞ for the
isoelectronic molecules H2O, NH3 and CH4 in figures 1–3.

(ii) The recognition that at low densities, the HF functional �x½�� must tend, when
sufficiently far from the nuclei, to the universal form (15).

(iii) The proposal, albeit now approximate, that in HF theory the exchange energy
density function (16) may provide a quantitative route in the absence of the
exact functional �x½��.

Relating loosely to (iii) above, we have included in the Appendix some discussion of
a solvable non-relativistic analytic example, but this time for 10-electron Ne-like
atomic ions with large atomic number Z. This example could play a role, we believe,
in the future, in relation to (iii) above, though we must stress that the Dirac density
matrix used is now the leading term in the 1/Z expansion of atomic theory,
and hence has no Fock operator contribution.

Finally, it is, of course, important for the future to study the non-locality of the
Löwdin correlation energy, Ec say, to be added to Ex defined in equations (4) and (5)
above. By analogy with equation (5), we can write

Ec ¼

Z
�cð~rÞd~r ð19Þ

The important question for the future is to assess the importance of non-locality in the
correlation energy density �cð~rÞ.

Our proposal for a modest start to provide an answer to this question in the
future, is to utilise Möller–Plesset (MP) perturbation theory, which is the natural
starting point for correcting HF theory for Löwdin electron correlation energy.
Of course, we recognise that low-order MP theory will only give a fraction of
the total Löwdin correlation energy, but nevertheless, if this fraction of �cð~rÞ
could be eventually extracted from MP2 (plus perhaps MP4 if it proves interesting)
the question of the importance of non-locality of �cð~rÞ could be answered with
some certainty.
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Appendix: Exchange energy for non-relativistic 10-electron neon-like

atomic ions in the limit of large atomic number Z

March and Santamaria [10] derived the Dirac density matrix �ð~r, ~r0Þ analytically for K
plus L closed shells in a bare Coulomb potential in the limit of large atomic number Z.
Then from the 1/Z expansion of atomic theory, one can construct � in leading order
from bare Coulomb wave functions.

Then one can use equation (4) above to calculate, also analytically, the exchange
energy density �xð~rÞ for this spherically symmetric 10-electron atomic ion. This was
done by Howard et al. and is given explicitly in their equation (2.2) [11]. The corre-
sponding ground-state electron density �ð~rÞ takes the form

�ðrÞ ¼
2

�

� �
Z

a0

� �3

exp
�2Zr

a0

� �

þ
1

4�

� �
Z

a0

� �3

exp
�Zr

a0

� �
1�

Zr

a0
þ
1

2

Zr

a0

� �2
" #

: ðA1Þ

To illustrate the low density function jr�j=lnð�Þ, we first take the large r limit of
equation (A1) to find

�ðrÞ ¼
1

4�

� �
Z

a0

� �3

exp
�Zr

a0

� �
1

2

Zr

a0

� �2

: r ! infinity: ðA2)

Then the leading term in jr�j at large r from equation (A2) is readily found as

jr�j ¼
Z

a0
�ðrÞ: ðA3)
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Similarly, from equation (2.2) of Howard et al. [11], the large r limit of the exchange
energy density is

�xðrÞ ¼ �
e�Zr=a0 ½972ð�rÞ2�

15,552

e2�3

�r

� �
: ðA4Þ

Removing the r dependence from the numerator of equation (A4) in favour of �(r) in
equation (A2) readily yields

�xðrÞ ¼ �
e2

2r
�ðrÞ ðA5)

which recovers equation (8) of the main text as it must.
Evidently, from equation (A2) we find

ln �ðrÞ ¼ �
Zr

a0
þOðln rÞ : r ! infinity: ðA6)

Hence equation (A5) can be rewritten, using equation (A3) and (A6) in the limit when
the O(ln r) term is negligible, as

�xðrÞ !
e2

2

jr�j

ln �ðrÞ
ðA7)

which recovers equation (15) of the main text.
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Figure A1. Plot of j�xðrÞj vs. �(r) for the exact model with Z¼ 92, a trendline (y¼ 2.2x) is included to guide
the eye.
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For this exact model, figures A1 and A2 display respectively, for Z¼ 92, �x(r) versus
�(r) and �x(r) versus jr�j=2 ln �ðrÞ.

For the future, it may be worthwhile to make plots of �x with x¼ a40�
4=3

and y ¼ ja40r�j=lnða
3
0�Þ, thereby generalising figures 1–3 shown above, though the

y variable is only to be included at sufficiently low density.
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Figure A2. Plot of j�xðrÞj vs. jr�j=2 ln ð�ðrÞÞ for the exact model with Z¼ 92, a trendline (y¼ 0.44x) is
included to guide the eye.
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